# Spectroscopy and Structure of Pentacoordinated Molecules 

Robert R. Holmes<br>Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01002

Received November 29, 1971

Many proposed reaction mechanisms involve a transitory pentacoordinate intermediate. For example, the change in optical activity accompanying bimolecular displacement at tetrahedral carbon has reasonably been explained as resulting from the formation of a trigonal-bipyramidal transient with the entering and leaving groups occupying apical positions. ${ }^{1}$ Also reasonable are mechanisms advanced to account for relative rates and products formed in the hydrolysis of phosphate esters ${ }^{2}$ or displacements in phosphonium ${ }^{3}$ systems. Certain hypotheses ${ }^{4}$ governing the stability of the transitory trigonal-bipyramidal species are applied, and a specific intramolecular exchange process is stipulated to occur in order to account for some of the experimental information. ${ }^{2}$ Mechanisms proposed to proceed via pentacoordinate species involving transition metal compounds ${ }^{5,6}$ are more speculative, whether they be dissociative (involving octahedral structures) or bimolecular (involving four-coordinate geometries).

In view of the prominence of pentacoordination in mechanistic studies, it seems appropriate to focus attention on pentacoordinate species themselves. In this Account, evidence, largely obtained from spectroscopic techniques, will be discussed which provides information relating to structural stability and ease of isomeric conversion in these species.

## Unique Features of Pentacoordination

The two common pentacoordinate structures, namely the trigonal bipyramid and the square pyramid, are unique among structures associated with simple coordination numbers in that an inequivalence of positions exists, giving rise to two sets of bonds with considerably different properties.

The differences between the two positions of a trigonal bipyramid show up in a variety of ways. For example, in nmr measurements of $\mathrm{PCl}_{2} \mathrm{~F}_{3}$ conducted at low temperatures ${ }^{4,7}$ different ${ }^{19} \mathrm{~F}$ resonances are observed, consistent with the presence of fluorine atoms in axial and equatorial positions of a trigonal bipyramid. Nuclear quadrupole resonance ( nqr ) measurements ${ }^{7}$ on $\mathrm{PCl}_{4} \mathrm{~F}$ show different ${ }^{35} \mathrm{Cl}$ resonances assignable to the presence of chlorine atoms in equatorial and axial positions of a trigonal bipyramid. Vibrational stretching frequencies have been observed to be greater for equatorial compared to axial positions ranging from

[^0]100 to $200 \mathrm{~cm}^{-1}$ higher for many of the molecules of nontransition elements that we have studied. ${ }^{8}$ Correspondingly, stretching force constants ${ }^{9-11}$ are lower for axial compared to equatorial bonds. Consistent with the latter, diffraction studies show that, in molecules like $\mathrm{PF}_{5}{ }^{12}$ and $\mathrm{SbCl}_{5}{ }^{13}$ equatorial bonds are shorter than axial bonds, while the reverse is found in the trigonal-bipyramidal $\mathrm{CuCl}_{5}{ }^{3-}$ and $\mathrm{CuBr}_{5}{ }^{3-}$ anions. ${ }^{14}$ Less is known about the square-pyramidal structure containing simple ligands, although X-ray studies on both $\mathrm{InCl}_{5}{ }^{2-}{ }^{15}$ and $\mathrm{Nb}\left(\mathrm{NMe}_{2}\right)_{5}^{16}$ have shown the presence of shorter axial bonds for this conformation.

Theoretical calculations on trigonal bipyramids are in agreement with the experimental evidence for nonequivalence of axial and equatorial positions. In general, MO calculations ${ }^{17}$ have shown that little d orbital bonding is present in trigonal bipyramids involving second-row elements and that the central atom $s$ orbital concentrates among the equatorial bonds. In this sense the axial bonding is related to an orbitaldeficient model akin to Rundle's interpretation. ${ }^{18}$ As a consequence weaker axial bonds compared to equatorial bonds are predicted and, in the case of $\mathrm{PF}_{\mathrm{j}}$, higher negative charges are calculated ${ }^{17 \mathrm{fa}, \mathrm{c}, \mathrm{d}}$ to reside on the axial fluorine atoms.

While for nontransition elements the main conformation of pentacoordinated substances is a trigonal bipyramid, there is a preponderance of square pyramids
(1) C. K. Ingold, "Structure and Mechanism in Organic Chemistry,' Cornell University Press, Ithaca, N. Y., 1953, p 403.
(2) F.H. Westheimer, Accounts Chem. Res., 1, 70 (1968).
(3) K. Mislow, ihid., 3, 321 (1970).
(4) (a) E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 2, 613 (1963); (b) E. L. Muetterties, W. Mahler, K. J. Packer, and R. Schmutzler, ibid., 3, 1298 (1964); (c) E. L. Muetterties, Accounts Chem. Res., 3, 266 (1970).
(5) Summarized by F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions," 2nd ed, Wiley, New York, N. Y., 1967.
(6) C. Furlani, Coord. Chem. Rev., 3, 141 (1967).
(7) R. R. Holmes, R. P. Carter, Jr., and G. E. Peterson, Inorg. Chem., 3, 1748 (1964).
(8) J. E. Griffiths, R. P. Carter, Jr., and R. R. Holmes, J. Chem. Phys., 41, 863 (1964).
(9) R. R. Holmes, ibid., 46, 3724 (1967).
(10) R. R. Holmes, ibid., 46, 3730 (1967).
(11) R. R. Holmes, R. M. Deiters, and J. A. Golen, Inorg. Chem., 8, 2612 (1969).
(12) K. W. Hansen and L. S. Bartell, ibid., 4, 1775 (1965).
(13) (a) S. M. Ohlberg, J. Amer. Chem. Soc., 81,811 (1959) ; (b) H. Moureau, M. Magat, and G. Wetroff, Proc. Ind. Acad. Sci., Raman Jubilee Vol., 361 (1938).
(14) (a) K. N. Raymond, D. W. Meek, and J. A. Ibers, Inorg. Chem., 7, 1111 (1968); (b) S. A. Goldfield and K. N. Raymond, ibid., 10, 2604 (1971).
(15) D. S. Brown, F. W. B. Einstein, and D. G. Tuck, ibid., 8, 14 (1969).
(16) C. Heath and M. B. Hursthouse, Chem. Commun., 143 (1971).
(17) (a) P. C. van der Voorn and R. S. Drago, J. Amer. Chem. Soc., 88, 3255 (1966) ; (b) D. P. Santry and G. A. Segal, J. Chem. Phys., 47, 158 (1967); (c) R. D. Brown and J. B. Peel, Aust. J. Chem., 21, 2589 (1968); 2605 (1968); 2617 (1968); (d) R.S. Berry, M. Tamres, C. J. Ballhausen, and H. Johansen, Acta Chem. Scand., 22, 231 (1968). (18) R. E. Rundle, Rec. Chem. Progr., 23, 195 (1962).
for transition metal elements. Simple repulsion calculations ${ }^{19,20}$ show that the two structures are quite close in energy, in agreement with inferences from experimental data. ${ }^{4}$ The latter data are based largely on the ease with which some trigonal-bipyramidal molecules equilibrate equatorial and axial ligands intramolecularly on an nmr time scale. In these presumably nonrigid structures, the trigonal bipyramid is imagined to deform readily to a low-lying transition state represented by a square pyramid, ${ }^{21}$ allowing loss of ligand identity. Recently nonempirical MO calculations ${ }^{222}$ on the hypothetical $\mathrm{PH}_{5}$ molecule have yielded a 3.9 $\mathrm{kcal} /$ mole energy difference between the ground-state trigonal bipyramid and the square-pyramidal transition state. ${ }^{22 b}$ Alternatively, a "turnstile" mechanism has been invoked to explain intramolecular exchange. ${ }^{23}$
Pentacoordinate substances are, in general, remarkably free of isomeric conformations, although the crystalline structure ${ }^{24}$ of $\left[\mathrm{Cr}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right][\mathrm{Ni}$ $\left.(\mathrm{CN})_{5}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ reveals both a distorted trigonal-bipyramidal and a regular square-pyramidal environment for the $\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]^{3-}$ ion, each differently hydrogen bonded to the water molecules that are present. In the anhydrous substance, the $\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]^{3-}$ anion is present in the square-pyramidal form. ${ }^{25}$

## Structural Considerations

Let us now direct our attention to some specific structural features and in a later section outline the relationship between structure and the process of intramolecular exchange in pentacoordinated species. Since observations of the phenomenon of intramolecular exchange have been most numerous with five-coordinate structures of group V elements, the discussion will center primarily on these substances, with particular application to mixed phosphorus fluorides.

Many of these members are highly volatile, reactive substances. Hence it is doubtful that diffraction techniques will be used at an accelerated rate to characterize their structures. However, sufficient structural determinations have been carried out to gain an appreciation for the main features encountered and for the deviations from idealized symmetries to be expected in going to more highly substituted members (Table $\left.I^{12,15,26-29}\right)$.
While unable to give bond distance information, vibrational spectroscopy has proven invaluable in as-

[^1]Table I
Bond Parameters for Some Pentacoordinate Molecules

|  | $r_{\text {eq }}, \AA$ | $\mathrm{rax}_{\mathrm{ax}} \mathrm{A}$ | Bond an | $\begin{gathered} \operatorname{les}^{a} \mathrm{deg} \\ \mathrm{e}_{1-\mathrm{a}}-\mathrm{a} \\ \hline \end{gathered}$ | Meth | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trigonal Bipyramid |  |  |  |  |  |  |
| $\mathrm{PF}_{5}$ | 1.534 | 1.577 |  |  | E | 12 |
| $\mathrm{CH}_{3} \mathrm{PF}_{4}$ | 1.54.3 P-F | 1.612 | 115.6 | 91.8 | E | 26 |
|  | 1.780 P-C |  |  |  |  |  |
| $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PF}_{3}$ | $1.553 \mathrm{P}-\mathrm{F}$ | 1.643 | 124.0 | 88.9 | E | 26 |
|  | $1.798 \mathrm{P}-\mathrm{C}$ |  |  |  |  |  |
| $\mathrm{HPF}_{4}$ | $1.55 \mathrm{P}-\mathrm{F}$ | 1.594 | 112 | $\sim 90$ | M | 27 |
|  | $1.36 \mathrm{P}-\mathrm{H}$ |  |  |  |  |  |
|  | (assumed) |  |  |  |  |  |
| $\mathrm{SnCl}_{5}{ }^{-b}$ | 2.36 av | 2.38 av |  |  | X | 28 |
|  |  | quare Pyramid |  |  |  |  |
| $\mathrm{InCl}_{5}{ }^{2-}$ - | 2.456 | 2.415 | 86.7 | 103.9 | X | 15 |
| $\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{5}{ }^{\text {d }}$ | 2.14 av | 2.14 av | 88 av | 102 av | X | 29 |

${ }^{a}$ Where it matters, the subscripts 2 and 3 on the equatorial atoms refer to the pair of identical atoms while the subscript 1 refers to the unique atom. ${ }^{b}$ The anion is 3 -chloro- $1,2,3,4$-tetraphenylcyclobutenium. ${ }^{c}$ The cation is tetraethylammonium. ${ }^{d}$ There is no evidence that the axial and equatorial bond lengths differ. Considerable distortions are present. The cis equatorial angles range from 84 to $91^{\circ}$ and the axial-equatorial angles from 95 to $109^{\circ}$. E, electron diffraction; M, microwave spectroscopy; X, X-ray diffraction.
certaining the molecular symmetries of a variety of pentacoordinated species ${ }^{30-50}$ (Table II). Definite information about the ground-state geometry is so obtained, uncomplicated by intramolecular exchange pbenomena. Exchange, if it occurs for a particular member, invariably takes place at a rate coincident with the nmr time scale. With reference to faster techniques most pentacoordinated species may be regarded as rigid in the usual sense. ${ }^{30}$ In this regard we have fully characterized the structures of the members of the phosphorus chlorofluoride series $\mathrm{PCl}_{n} \mathrm{~F}_{5-n}$ by means of
(30) H. C. Lonquet-Higgins, Mol. Phys., 6, 445 (1963).
(31) (a) R. R. Holmes, J. Chem. Phys., 46, 3718 (1967); (b) R. M. Deiters and R. R. Holmes, ibid., 48, 4796 (1968).
(32) R. R. Holmes and W. P. Gallagher, Inorg. Chem., 2, 433 (1963).
(33) R. P. Carter, Jr., and R. R. Holmes, ibid., 4, 738 (1965).
(34) R. R. Holmes and R. P. Carter, Jr., J. Chem. Phys., 43, 1645 (1965).
(35) A. A. Maryott, S. J. Kryder, and R. R. Holmes, ibid., 43, 2556 (1965).
(36) R. R. Holmes and M. Fild, ibid., 53, 416 (1970).
(37) R. R. Holmes and M. Fild, Inorg. Chem., 10, 1109 (1971).
(38) L. C. Hoskins and R. C. Lord, J. Chem. Phys., 46, 2402 (1967).
(39) I. W. Levin, ibid., 50, 1031 (1969).
(40) G. L. Carlson, Spectrochim. Acta, 19, 1291 (1963).
(41) M. J. Taylor and L. A. Woodward, J. Chem. Soc., 4670 (1963).
(42) J. E. Griffiths, J. Chem. Phys., 44, 2686 (1966) .
(43) A. J. Downs and R. Schmutzler, Spectrochim. Acta, Part A, 23, 681 (1967).
(44) A. J. Downs, R. Schmutzler, and I. A. Steer, Chem. Commun., 221 (1966).
(45) R. R. Holmes and C. J. Hora, Jr., Inorg. Chem., in press.
(46) J. E. Griffiths, J. Chem. Phys., 49, 1307 (1968).
(47) A. J. Downs and R. Schmutzler, Spectrochim. Acta, 21, 1927 (1965).
(48) J. E. Griffiths, J. Chem. Phys., 41, 3510 (1964).
(49) (a) A. L. K. Aljibury and R. L. Redington, ibid., 52, 453 (1970) ; (b) gas phase infrared observations indicate that monomeric $\mathrm{SbF}_{5}$ is trigonal bipyramidal: L. E. Alexander and I. R. Beattie, ibid., 56, 5829 (1972).
(50) (a) D. F. Shriver and I. Wharf, Inorg. Chem., 8, 2167 (1969); (b) S. R. Leone, B. Swanson, and D. F. Shriver, ibid., 9, 2189 (1970).

Table II
Point Group Symmetries from Vibrational Spectroscopy

| $D_{s h}$ | Ref | ${ }_{2}{ }^{2}$ | Ref | $C_{2 v}$ | Ref | $\begin{aligned} & \text { Squart } \\ & C_{4 v} \end{aligned}$ | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{PF}_{5}$ | 8, 31b, 38, 39 | $\mathrm{PClF}_{4}$ | 31a | $\mathrm{PCl}_{2} \mathrm{~F}_{3}$ | 8 | $\mathrm{SbF}{ }^{\text {b }}$ | 49 |
| $\mathrm{PCl}_{5}$ | 40, 41 |  |  |  |  |  |  |
| $\mathrm{PCl}_{8} \mathrm{~F}_{2}$ | 8 | PHF\% | 45 | $\mathrm{PH}_{2} \mathrm{~F}_{3}$ | 45 | $\begin{gathered} {\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]_{2 \mathrm{~m}}} \\ {\left[\mathrm{InCl}_{5}\right]} \end{gathered}$ | 50 |
| $\mathrm{PCl}_{3}\left(\mathrm{CFF}_{3}\right)_{2}$ | 42 | $\mathrm{CF}_{3} \mathrm{PF}_{4}$ | 46 | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PF}_{3}$ | 43 | $\begin{gathered} {\left[\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{4} \mathrm{~N}\right]_{2-}} \\ {\left[\mathrm{TlCl}_{5}\right]} \end{gathered}$ | 50 a |
| $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PF}_{2}$ | 43 | $\mathrm{CCl}_{3} \mathrm{PF}_{4}$ | 36 |  |  |  |  |
| $\mathrm{AsF}_{5}$ | 38 | $\mathrm{CH}_{3} \mathrm{PF}_{4}$ | 47 | $C_{3 v}$ |  |  |  |
| $\mathrm{SbCl}_{5}$ | 40 | $t$ - $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CPF}_{4}$ | 37 | $\mathrm{PCl}_{4} \mathrm{~F}$ | 8 |  |  |
| $\mathrm{Sb}\left(\mathrm{CH}_{3}\right)_{3}$ | 44 |  |  | $\mathrm{CFF}_{3} \mathrm{PCl}_{4}$ | 48 |  |  |

vibrational spectroscopy ${ }^{8,31}$ supplemented by studies involving nmr, ${ }^{7,32,33}$ nqr, ${ }^{7,319}$ and vapor phase dipole moment ${ }^{31 a, 34,85}$ measurements. Recently, we have extended such studies to include derivatives containing highly electronegative as well as bulky substituents. ${ }^{86,37}$

Much of the vibrational work has been conducted in the vapor state. The latter has proven important not only for the study of the structures free of environmental influences but also to understand more completely structural changes encountered on going to other states. For example, $\mathrm{PCl}_{5}$, as is well known, is a trigonal bipyramid ${ }^{40,41,51}$ in the vapor but exists as an ionic solid. ${ }^{52}$ Several other compounds are associated in the solid. $\mathrm{NbCl}_{5}$ is a dimer ${ }^{33}{ }^{32}$ containing chlorine atom bridges, $\mathrm{NbF}_{5}$ is a tetramer, ${ }^{\text {,3b }}$ while $\mathrm{SbF}_{5}$ may be more highly associated ${ }^{58 \mathrm{c}}$ in the solid state. Using matrix isolation techniques, infrared spectra of both $\mathrm{SbF}_{5}^{49}$ and $\mathrm{NbCl}_{5}^{53 \mathrm{~d}}$ in monomeric form have been obtained.

The geometrical shape of pentacoordinate molecules in a trigonal-bipyramidal framework (Tables I and II) generally agrees with expectations from the simple electron pair repulsion scheme extensively discussed by Gillespie. ${ }^{54}$ Progressive methyl substitution in $\mathrm{PF}_{5}$ from $\mathrm{CH}_{3} \mathrm{PF}_{4}$ to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PF}_{3}$ leads to increased P-F bond distances, particularly in the axial positions. ${ }^{26}$ Further, the axial bonds containing the fluorine atom ligands are bent away from the equatorially positioned methyl groups. In terms of electron pair repulsion, ${ }^{54}$ the less electronegative methyl group allows the $\mathrm{P}-\mathrm{C}$ bonding electron pair to come closer to the phosphorus atom compared to the situation in the P-F bond it replaced. Enhanced repulsion results, particularly with the electron pairs in the P-F axial bonds located near $90^{\circ}$ relative to the $\mathrm{P}-\mathrm{C}$ bond.

[^2]
## Bonding in Phosphorus Chlorofluorides, $\mathrm{PCl}_{n} \mathrm{~F}_{5-n}$

As with the methyl derivatives, substitution of chlorine atoms for fluorine atoms in $\mathrm{PF}_{5}$ is expected, because of enhanced repulsions, to lead to a general increase of bond lengths, more so in the axial than in the equatorial positions. The remaining axial $\mathrm{P}-\mathrm{F}$ bond in the least fluorinated member, $\mathrm{PCl}_{4} \mathrm{~F}$, should be the longest in the phosphorus chlorofluoride series. The implication is that it should be the weakest as well. Data from both $n m r^{7}$ and vapor phase dipole moment ${ }^{84}$ measurements may be interpreted in support of this view. In agreement, Hückel-type molecular orbital calculations ${ }^{17 a}$ show a decrease in orbital overlap population in axial bonds with increased chlorine atom substitution. The decrease is attributable to increasing mismatch in orbital energies along the series as the phosphorus atom becomes more electropositive.

Both $\mathrm{PClF}_{4}{ }^{312}$ and $\mathrm{PCl}_{2} \mathrm{~F}_{3}{ }^{34}$ have similar dipole moments, about that expected, while $\mathrm{PCl}_{4} \mathrm{~F}^{35}$ has a very low value (Table III). Assuming 90 and $120^{\circ}$ for the

Table III
Gas-Phase Dipole Moments for the $\mathbf{P Y}_{n} \mathbf{F}_{\mathbf{j}_{-n}}$ Series

|  | $\mu, \mathrm{D}$ | Ref |  | $\mu, \mathrm{D}$ | Ref |
| :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathrm{PClF}_{4}$ | 0.78 | 31 a | $\mathrm{PHF}_{4}$ | 1.32 | 27 |
| $\mathrm{PCl}_{2} \mathrm{~F}_{3}$ | 0.68 | 34 | $\mathrm{CH}_{3} \mathrm{PF}_{4}$ | 2.55 | 37 |
| $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ | 0.0 | 34 | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PF}_{4}$ | 2.77 | 37 |
| $\mathrm{PCl}_{4} \mathrm{~F}$ | 0.21 | 35 | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CPF}_{4}$ | 2.82 | 37 |
|  |  |  | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PF}_{3}$ | 2.22 | 37 |

two sets of ligand angles, all structures may be reduced vectorially to a P-F opposing a P-Cl bond dipole. The small angular distortions from idealized symmetries expected have been shown to be inadequate in explaining the low moment value for $\mathrm{PCl}_{4} \mathrm{~F}$ even if the distortions were in favorable directions. ${ }^{34}$ The low value for $\mathrm{PCl}_{4} \mathrm{~F}$ then indicates a low charge separation in the axial P-F linkage since a very narrow range of pure ${ }^{35} \mathrm{Cl}$ nqr frequencies is observed ${ }^{7}, 312$ in the $\mathrm{PCl}_{n} \mathrm{~F}_{5-n}$ series, while ${ }^{19} \mathrm{~F} \mathrm{nmr}$ data ${ }^{7}$ show a very large deshielding occurring as fluorine atoms are replaced by chlorine atoms and a substantial deshielding of the fluorine nucleus for axial compared to equatorial fluorine atoms (Figure 1). If we associate this deshielding trend ob-


Figure 1. ${ }^{19} \mathrm{~F}$ chemical shifts relative to $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$.
served for the axial positions with a reduced charge distribution about the fluorine atom, the observation of the low dipole moment for $\mathrm{PCl}_{4} \mathrm{~F}$ is understandable.

The mechanism by which a reduction in charge should occur, however, is not so readily understood. The trend in ${ }^{19} \mathrm{~F}$ resonance values for the series $\mathrm{PCl}_{n} \mathrm{~F}_{5-n}$ is in a direction opposite from that expected based on electronegativity considerations. Enhancement of d-p $\pi$ bonding in axial $\mathrm{P}-\mathrm{F}$ bonds proceeding toward the least fluorinated member had been suggested ${ }^{7,34}$ to account for the relative deshielding of axial fluorine atoms with the understanding that the total axial bond energy was less than that for the equatorial bonds. However the latter suggestion left unexplained the general downfield shift observed in the series, particularly with regard to the large difference between equatorial and axial positions. Furthermore, recent molecular orbital calculations on $\mathrm{PF}_{5}$ and related structures ${ }^{17,22 a}$ are in accord in discounting any significant importance of phosphorus $d$ orbital participation in bonding in $\mathrm{PF}_{5}$. In addition, the weaker axial bonds in $\mathrm{PF}_{5}$ result, having a slightly more negative fluorine atom compared to their equatorial counterpart in terms of charge density calculations.

Based on the above, it seems more likely that the pronounced deshielding observed ide series $\mathrm{PCl}_{n} \mathrm{~F}_{5-n}$ is associated with the lack of transmission of electron density to axial fluorine atoms as chlorine substitution increases. As a consequence, a reduction in the positive charge at phosphorus occurs. The accompanying progressive bond weakening effects, more so in axial than in equatorial positions (inferred from force constants, ${ }^{9-11}$ bond distances (Table I), and overlap populations ${ }^{17 \mathrm{a}}$ ), take precedence as the dominant factor in leading to a small charge difference in the $P$-F bond in $\mathrm{PCl}_{4} \mathrm{~F}$.

As one extreme, the orbital deficient model simply gives the resultant charges as


As the covalent contribution to the total bonding energy decreases with substitution along the series, the other extreme representation becomes


- $\mathrm{F}^{0}$

Using groups of greater electron-releasing ability such as methyl and tert-butyl, successive replacement of fluorine atoms may be anticipated to result in reduced covalent bonding for similar reasons given for the $\mathrm{PCl}_{n} \mathrm{~F}_{5-n}$ series. However, transmission of the greater electron density supplied to the phosphorus atom should be facilitated, yielding more ionic fluorine atoms and, consequently, an enhanced importance to ionic contributions to the total bonding energy. In accord, the trend in ${ }^{19} \mathrm{~F}$ shifts in Figure 1 in the series ( $t-\mathrm{Bu})_{n} \mathrm{PF}_{5-n}{ }^{55}$ is more in line with electronegativity considerations and the equatorial and axial ${ }^{19} \mathrm{~F}$ shifts for $(t-\mathrm{Bu})_{2} \mathrm{PF}_{3}$ tend to converge relative to that for $\mathrm{Cl}_{2} \mathrm{PF}_{3}$.

## Model for Exchange in $\mathrm{PF}_{5}$ and $\mathrm{PYF}_{4}$

Vibrational spectroscopy indicates ${ }^{31 \mathrm{a}}$ that $\mathrm{PClF}_{4}$ exists as a trigonal-bipyramidal molecule with two types of fluorine atom environments, an axial pair and an equatorial pair. In contrast, ${ }^{19} \mathrm{~F} \mathrm{nmr}$ measurements ${ }^{33}$ show only one fluorine atom environment spin coupled to the phosphorus atom similar to that observed ${ }^{4,56}$ for $\mathrm{PF}_{5}$ and many other members of the $\mathrm{PYF}_{4}$ class. The apparent discrepancy is resolved by considering $\mathrm{PClF}_{4}$ to be undergoing rapid intramolecular exchange on an nmr time scale but slow relative to vibrational motions.

The pathway for exchange for $\mathrm{PClF}_{4}$, as first suggested by Berry ${ }^{21}$ for $\mathrm{PF}_{5}$, may be imagined to result from a vibrational bending motion, involving both axial and equatorial fluorine ligands, leading to a square-pyramidal transitory conformation. The ligand labeled 1 in the model executes little movement in

the exchange process and does not interfere in allowing equivalence of fluorine atom positions to take place. Consequently, this model for exchange for trigonal bipyramids of the class $\mathrm{MF}_{5}$ is the same as that for the class MYF4 for all practical purposes.
(55) M. Fild and R. Schmutzler, J. Chem. Soc. A, 2359 (1970).
(56) (a) R. Schmutzler, Angew. Chem., Int. Ed. Engl., 4, 496 (1965) ; (b) R. Schmutzler in "Halogen Chemistry," V. Gutmann, Ed., Vol. 2, Academic Press, New York, N. Y., 1967, p 31.

In view of the above concerning the ease of intramolecular exchange of some trigonal bipyramids on the one hand and the lack of formation of isomers on the other, one might infer as a guiding principle in constructing exchange mechanisms that energy differences between isomeric trigonal bipyramids for a particular molecular formulation are appreciable while energy differences between a nonrigid trigonal bipyramid and its associated square-pyramidal conformation are relatively small assuming, of course, that the square pyramid is an adequate representation of the transitory exchange state.

## Vibrational Potential Fields and Intramolecular Exchange

Considerable insight may be gained into mechanisms of intramolecular cxchange by carrying out normal coordinate calculations based on assignments of fundamental frequencies for various members. ${ }^{11,57}$ The calculations lead to a definition of a vibrational force field which associates an internal vibrational motion of a specified amplitude with each fundamental frequency. Examination of the bending motions and their respective amplitudes may suggest a suitable low-energy pathway for exchange, especially in cases where the exchange process does not appear obvious.
The lowest frequency fundamental will contribute importantly to the exchange coordinate. In $\mathrm{PF}_{5}$, for example, the bending frequency thought to be largely responsible ${ }^{57}$ for intramolecular exchange has been assigned to a Raman vibrational band appearing in the gas phase ${ }^{58}$ at $174 \mathrm{~cm}^{-1}$. The magnitude of the exchangeenergy calculated ${ }^{11,59}$ in this process using at first a harmonic approximation is related to the amount of angular change in reaching the square-pyramidal structure. In this respect the process is analogous to the treatment used by Costain and Southerland ${ }^{60}$ to estimate the barrier to inversion for the $\mathrm{NH}_{3}$ molecule.

The Berry mechanism ${ }^{21}$ referred to earlier had its initial basis in its intuitive appeal. However, by the latter type of calculation we were able to confirm ${ }^{11,57,59}$ that the bending motion depicted above traverses a pathway of low energy. Consequently, the Berry motion defines an acceptable exchange coordinate based on vibrational analysis. Whether the detailed mechanism involves activation over or tunneling through the barrier from excited vibrational states is a question unanswered as yet. ${ }^{38,57}$
Actually, two acceptable fields result, ${ }^{11}$ differing in the assignment of equatorial and axial bending modes. Fortunately, a decision as to the appropriate function to use was aided by vibrational amplitude data from electron diffraction work, ${ }^{51,61}$ at least for some of the

[^3]most symmetrical trigonal-bipyramidal molecules, $\mathrm{PF}_{\mathrm{i}}$, $\mathrm{VF}_{5}, \mathrm{AsF}_{5}$, and $\mathrm{PCl}_{5}$. This field is one which associates the lowest vibrational frequency with a greater degree of in-plane equatorial bending motion in the lower vibrational states compared to an axial bend ${ }^{59}$ and results in larger vibrational amplitudes for equatorial ligand atoms compared to amplitudes for the same kind of ligand in the axial positions.
While the preferred force field ${ }^{11,59,61}$ for symmetrical trigonal bipyramids shows a greater amplitude in the ground and lower excited states for in-plane equatorial bond bending relative to axial atom bending, most likely the relative motion of the axial atoms increases due to decreased repulsion as the exchange coordinate is traversed. In this manner one may reach the square pyramid formulated by Berry yet be consistent with the use of the potential function suggested by vibrational ${ }^{11,59}$ and electron diffraction ${ }^{61}$ data.
Barrier energies calculated ${ }^{11}$ in the manner described above and based on the preferred force field ${ }^{62}$ are presented in column 2 of Table IV. These values include

Table IV
Calculated Energy Barriers for Intramolecular Exchange

|  | $\Delta E, \mathrm{kcal} / \mathrm{mole}^{a}$ | $\Delta E, \mathrm{kcal} / \mathrm{mole}$ |
| :--- | :---: | :---: |
| $\mathrm{PF}_{5}$ | 15.3 | 3.8 |
| $\mathrm{AsF}_{5}$ | 11.8 | 3.0 |
| $\mathrm{VF}_{5}$ | 7.2 | 1.8 |
| $\mathrm{PCl}_{5}$ | 14.9 | 3.7 |
| $\mathrm{SbCl}_{5}$ | 8.9 | 2.2 |
| $\mathrm{Sb}\left(\mathrm{CH}_{3}\right)_{5}$ | 12.7 | 3.2 |
| $\mathrm{NbCl}_{5}$ | 14.9 | 3.7 |
| $\mathrm{PH}_{5}$ | 6.3 | 1.6 |
| $\mathrm{InCl}_{5}^{2-}$ | 36.7 | $9.2^{b}$ |

${ }^{a}$ Values taken from ref 11 (field B ) except $\mathrm{VF}_{5}$ and $\mathrm{InCl}_{5}{ }^{2}$. The value here for VFs is calculated based on the recently observed ${ }^{63} \nu_{7}$ frequency of $109 \mathrm{~cm}^{-1}$. ${ }^{b}$ Reference 64 .
an empirical correction for anharmonicity. ${ }^{57}$ Values listed in column 3 are considered more realistic. They are scaled relative to $\mathrm{VF}_{5}$. The value for the latter substance was calculated based on observed ${ }^{65}$ anharmonicity effects for its low-frequency band ( $109 \mathrm{~cm}^{-1}$ ) concluded to be largely responsible for the exchange motion. Unfortunately, at present, anharmonicity effects have not been revealed for the other molecules listed. Included in the table is a value calculated by the same method ${ }^{64}$ for positional exchange in squarepyramidal $\mathrm{InCl}_{5}{ }^{2-}$ proceeding through a trigonal-bipyramidal transition state. The normal coordinate

[^4]appropriate to the latter calculation is of $b_{1}$ symmetry and has an associated frequency of $165 \mathrm{~cm}^{-1} .^{66}$

The value of $1.6 \mathrm{kcal} / \mathrm{mole}$ in Table IV for the hypothetical $\mathrm{PH}_{5}$ molecule compares favorably with a value of $3.9 \mathrm{kcal} /$ mole resulting from molecular orbital calculations. ${ }^{22 a}$ The results of the barrier calculations suggest the order of nonrigidity $\mathrm{VF}_{5}>\mathrm{AsF}_{5}>\mathrm{PF}_{5}$. Experimental verification of this order, at least, regarding the extent of nonrigidity of $\mathrm{VF}_{5}$ compared to the other two has been supplied by molecular beam studies. ${ }^{67}$

## Exchange in the $\mathbf{P Y}_{2} \mathbf{F}_{3}$ Species

For the most part, pentacoordinated molecules of the type $\mathrm{PY}_{2} \mathrm{~F}_{3}$ show ${ }^{4,66}{ }^{19} \mathrm{~F} \mathrm{nmr}$ spectra consistent with a trigonal-bipyramidal structure containing two axial and one equatorial fluorine atoms. For many of these molecules intramolecular exchange takes place at a sufficiently rapid rate that the latter nmr spectrum is observed only at low temperatures. ${ }^{68}$ Taken by itself, the nmr patterns corresponding to the nonexchanging systems are also consistent with square-pyramidal structures. However, vibrational spectroscopy on many of these systems (Table II) and electron diffraction ${ }^{26}$ on one, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PF}_{3}$, have established that the ground state is the trigonal-bipyramidal structure.

As with $\mathrm{PF}_{5}$ and $\mathrm{PYF}_{4}$ systems, low-frequency fundamental vibrations are assignable to bending motions. However, unlike the latter systems, intramolecular exchange via a simple equatorial-axial angle bending process (single-stage Berry process) does not correspond to an exchange coordinate unless the bending motion is allowed to proceed further to yield the more symmetrical trigonal bipyramid containing all three fluorine atoms in equatorial positions or if the process is made more complex by allowing successive positional exchanges to occur. In both of these processes the presumed structure would be considered relatively unstable since it places less electronegative groups in axial positions. As mentioned, isomers like that represented have not been prepared. ${ }^{4,56}$

Less is known about the exchange process for $\mathrm{PY}_{2} \mathrm{~F}_{3}$ than for $\mathrm{PYF}_{4}$ systems. For $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NPF}_{4}$ Whitesides and Mitchell ${ }^{69}$ observed the temperature dependence of the ${ }^{31} \mathrm{P}$ nmr spectrum and concluded that both sets of fluorine ligands exchange simultaneously. The latter information provides additional support for a Berry mechanism for nonrigid members of the $\mathrm{MX}_{\sqrt[3]{ }}$ and MYX $_{4}$ series. This type of experimental information is unavailable for any $\mathrm{PY}_{2} \mathrm{~F}_{3}$ system.

By analogy with the exchange mechanism proposed for $\mathrm{PF}_{5}$ and $\mathrm{PYF}_{4}$ systems, it seems reasonable to expect exchange in $\mathrm{PY}_{2} \mathrm{~F}_{3}$ systems to proceed through a

[^5]low-lying square-pyramidal conformation. The relative rates ${ }^{4,311,56}$ of exchange in $\mathrm{PY}_{2} \mathrm{~F}_{3}$ compared to $\mathrm{PYF}_{4}$ systems are considerably slower. Thus any transitory state would differ more in structural makeup relative to the ground-state configuration than in the $\mathrm{PYF}_{4}$ series.

For the purpose of discussion, an idealized squarepyramidal geometry is used. It is taken to be that one which has an axial-equatorial angle of approximately $104^{\circ}$. This geometry is predicted ${ }^{19}$ to be the most stable square pyramid on the basis of simple repulsion arguments and is the one observed for $\mathrm{InCl}_{5}{ }^{2-}$ (Table I). It is also the geometry suggested by the Berry mechanism. ${ }^{21}$ It is noted that the square-pyramidal transitory state suggested for exchanging $\mathrm{PYF}_{4}$ compounds contains the least electronegative group in the lone axial position. Based on the assumed axial-basal angle of $104^{\circ}$ in the square pyramid, minimization of electron-pair repulsions predicts a shorter axial bond relative to the bond lengths to the basal ligands oriented at $87^{\circ}$ to one another. Proceeding with this approach, introduction of an additional ligand, forming the series $\mathrm{PY}_{2} \mathrm{~F}_{3}$, leads to

for the transitory structure.
In order to test whether this hypothesis has any basis in fact, an analysis ${ }^{70}$ of internal vibrations and their relative amplitudes was carried out for a number of examples. It was found, as with $P F_{5}$, that the preferred force field leads to the greatest ground-state amplitudes for equatorial ligands executing in-plane bending motions coupled with bending motions from axial atoms to a lesser but significant degree. Based on these amplitudes, a motion leading to exchange via the square-pyramid transitory state discussed above becomes reasonable. The mode postulated ${ }^{70 \mathrm{~b}}$ to largely govern the exchange combines an asymmetric in-plane bend simultaneous with an axial bend. As the angle $\alpha$ increases, space is provided for the axial atoms bending toward each other. During the course of this motion, a $90^{\circ}$ rotation is assumed between atom sets 1,3 and 4,5 , providing for minimum repulsion of ligands leading to the desired isomer. In this way equivalence of fluorine atom posi-


[^6]tions exhibited by ${ }^{19} \mathrm{~F} \mathrm{nmr}$ data for exchanging members ${ }^{4,7,56,71}$ is achieved.

The pathway suggested offers a better rationalization ${ }^{4 a}$ of intramolecular exchange observed in the cyclic structure $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PF}_{3}$ in that it avoids placing an alkyl group in an axial position of a trigonal-bipyramidal transitory state.


The recently discussed ${ }^{23}$ "turnstile" mechanism may be applied to $\mathrm{PY}_{2} \mathrm{~F}_{3}$ molecules as an alternate possibility. The barrier height by this route corresponds to a structure having three ligands arranged at the corners of a triangle on one side of the central atom and the other two ligands residing on the opposite side of the central atom. Applied to $\mathrm{PH}_{2} \mathrm{~F}_{3}$, atoms $\mathrm{H}_{1}$ and $\mathrm{F}_{4}$ rotate relative to the other three as the angle $\mathrm{H}_{2} \mathrm{P}_{6} \mathrm{~F}_{3}$ approaches $90^{\circ}$. In the barrier structure on the right atoms 1, 2, 4, and 6 are in one plane bisecting the $\mathrm{F}_{3^{-}}$ $\mathrm{P}-\mathrm{F}_{5}$ angle and show the equivalence of equatorial fluorine atom 3 and axial fluorine atom 5. Actually

the mechanism is similar to the "twist" mechanism associated with rearrangements in octahedral compounds ${ }^{72}$ but with the necessity of accompanying bond bending motions to achieve the desired state. Using the CNDO/2 approximation about $15 \mathrm{kcal} /$ mole results ${ }^{23}$ for the barrier for the above turnstile structure compared with $6 \mathrm{kcal} /$ mole estimated ${ }^{23}$ via the mechanism proceeding through the "favored" square-pyramidal transition state. Although the turnstile process appears less feasible when considering intramolecular exchange phenomena for the less substituted pentacoordinate systems containing simple ligands, it does appear that this process should become increasingly more important in certain chelated and more highly substituted members. ${ }^{23}$ In the less fluorinated molecules $\mathrm{PY}_{3} \mathrm{~F}_{2}$ and $\mathrm{PY}_{4} \mathrm{~F}$ no evidence ${ }^{4,7,56}$ for intramolecular exchange is available.

Isomer Stabilization. The apparent lack of isolation of isomers for pentacoordinate substances is a consequence of the considerable difference in properties for the two sets of positions in each of the two basic conformations. However, if ligand properties are matched in an effort to reduce energy differences among isomeric

[^7]Table V
Exchange Rates for $\mathrm{PY}_{2} \mathrm{~F}_{3}$ Compounds

| Y | $\quad{ }^{19 \mathrm{~F} \text { nmr exchange rate }}$ | Ref |
| :--- | :--- | :---: |
| $\mathrm{CF}_{3}{ }^{a}$ | Rapid at $-120^{\circ}$ | 4 |
| Cl | "Stopped" below $\sim-120^{\circ}$ | 4,7 |
| H | "Stopped" below $-45^{\circ}$ | 71 |
| $\mathrm{CH}_{3}$ | No exchange at $25^{\circ}$ | 4 |
| $t-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{b}$ | No exchange at $25^{\circ}$ | 55 |

${ }^{\text {a }}$ Structure uncertain. See text. ${ }^{\dot{b}}$ Structure recently determined as $C_{s}$ by vibrational spectroscopy in our laboratory (unpublished work).
structures, an enhanced rate of ligand exchange occurs. Representative data listed in Table V illustrating this point show that, as the electronegativity difference of the ligands in the two positions decreases for $\mathrm{PY}_{2} \mathrm{~F}_{3}$ compounds, the rate of ligand exchange increases.

The only indication that isomers may have been isolated for substances containing simple ligands is found with the use of the electronegative $\mathrm{CF}_{3}$ group as a ligand in $\mathrm{CF}_{3} \mathrm{PF}_{4}$. Results of a microwave study ${ }^{73}$ and a vibrational investigation ${ }^{46}$ have led to different conclusions concerning its structure. An explanation of the preference for a square-pyramidal form for $\mathrm{TnCl}_{5}{ }^{2-}$ is not known. In the isoelectronic sequence, $\mathrm{InCl}_{5}{ }^{2-}$, $\mathrm{SnCl}_{5}^{-}$, and $\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{5}$, X-ray studies (Table I) show $\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{\overline{0}}\right)_{5}$ to possess a distorted square-pyramidal structure and $\mathrm{SnCl}_{5}^{-}$to have a trigonal-bipyramidal structure. It may be that the reduced electronegativity found with these metal atoms provides for greater ionicity of attached ligands, possibly enhanced in the solid state, leading to stabilization of the squarepyramidal form. By going to larger less electronegative atoms, electron-pair repulsion effects are lessened. Alternatively, bond energy differences among the two sets of positions in the trigonal bipyramid and square pyramid may be minimized such that either structure is stabilized by smaller perturbing influences. As a consequence, packing factors or simple ion-ion interactions in the solid may provide the stabilization energy for either of the structures or some structure intermediate between them.

Future work focused on the stereochemistry and bonding differences in square pyramids of nontransition elements should be rewarding, particularly so if intramolecular exchange exists for some members of this class. Especially revealing would be the preparation of an exchanging member existing at the crossover


[^8]"point" in stability between the square pyramid and trigonal bipyramid. Such a member would be expected to have a most rapid exchange rate, perhaps high enough to allow quantum mechanical tunneling to become a significant process. Observance of the resultant spectroscopic splittings would then provide the necessary evidence to distinguish critically among ex-
change pathways. ${ }^{74}$
The National Science Foundation is thanked for support of work described in this review. I am very happy to acknowledge the valuable contributions of colleagues, past and present, in these studies.
(74) B. J. Dalton, J. Chem. Phys., 54, 4745 (1971), has detailed the effect of a rapid Berry process on rotational levels.

# A New Series of Nitrene-Induced Aromatic Rearrangements 

John I. G. Cadogan<br>Department of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ, Scotland<br>Received March 31, 1972

This Account describes a new series of rearrangements, induced by aryl nitrenes or their precursors, leading to a wide variety of nitrogen-containing heterocyclic compounds. Aryl nitrenes may be produced by the phosphite reduction of nitro compounds ${ }^{1,2}$ (Scheme I) and by photolysis and thermolysis of aryl azides. ${ }^{3}$

## Scheme I



More recently the long known, but less familiar, anthra-nil-acridone transformation ${ }^{4}$ (Scheme I) has come to be regarded in terms of nitrene participation. ${ }^{5,6}$

[^9]The first two routes, particularly, have been used to synthesize a wide variety of heterocyclic compounds, ${ }^{2,{ }^{3}}$ the methods working best when a resulting five-membered nitrogen-containing ring was possible. An exception to this was the successful conversion of aryl 2 -nitrenoaryl sulfides into the six-membered phenothiazines (Scheme II), and it was assumed that

Scheme II


$$
\mathrm{X}=\mathrm{N}_{3} \text { at } 180^{\circ} \text { or } \mathrm{NO}_{2}, \quad\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P} \text { at } 150^{\circ}
$$

this involved direct insertion at the ortho position in the receiving ring. During investigations of this reaction carried out simultaneously in the United Kingdom and France it became clear that the latter reaction, in fact, proceeded via rearrangement. Close on the heels of this it was found that the anthranil-acridone transformation (Scheme II) also proceeded with rearrangement. 6 Hence within the space of only 6 weeks in 1968, three independent reports of a new nitrene-induced rearrangement had appeared. Many further examples and extensions of the rearrangement have since been reported.

As will be seen below, it is possible to generalize the reaction as in Scheme III wherein the nitrene $\mathbf{3}$ or its precursor may react via a five-membered spirodienyl intermediate (4) which regains aromaticity, by various pathways depending on the nature of the bridging

[^10]
[^0]:    Robert R. Holmes received his Ph.D. in 1953 with Professor H. C. Brown at Purdue University. He taught at the Carnegie Institute of Technology for 9 years and then joined the technical staff at Bell Telephone Laboratories, Murray Hill, N.J. In 1966 he moved to the University of Massachusetts, Amherst, where he is presently Professor of Inorganic Chemistry. His principal research interests include the application of structural methods in phosphorus chemistry, the synthesis of group $V$ compounds, and the study of pentacoordinate derivatives.

[^1]:    (19) J. Zemann, Z. A norg. Allgem. Chem., 324, 241 (1963).
    (20) R. J. Gillespie, J. Chem. Soc., 4672 (1963).
    (21) R.S. Berry, J. Chem. Phys., 32, 933 (1960)
    (22) (a) A. Rauk, L. C. Allen, and K. Mislow, J. Amer. Chem. Soc., 94, 3035 (1972) ; (b) see also J. B. Florey and L. C. Cusachs, ibid., 94, 3040 (1972), and R. Hoffmann, J. M. Howell, and E. Muetterties, ibid., 94, 3047 (1972), for semiempirical approaches.
    (23) I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie, and F. Ramirez, Accounts Chem. Res., 4, 288 (1971).
    (24) K. N. Raymond, P. W. R. Corfeld, and J. A. Ibers, Inorg. Chem., 7, 1362 (1968).
    (25) A. Terzis, K. N. Raymond, and T. G. Spiro, ibid., 9, 2415 (1970).
    (26) L. S. Bartell and K. W. Hansen, ibid., 4, 1777 (1965).
    (27) S. B. Pierce and C. D. Cornwell, J. Chem. Phys., 48, 2118 (1968).
    (28) R. F. Bryan, J. Amer. Chem. Soc., 86, 733 (1964).
    (29) P. J. Wheatley, J. Chem. Soc., 3718 (1964).

[^2]:    (ō1) W. J. Adams and L. S. Bartell, J. Mol. Struct., 8, 23 (1971).
    (52) D. Clark, H. M. Powell, and A. F. Wells, J. Chem. Soc., 642 (1942).
    (53) (a) A. Zalkin and D. E. Sands, Acta Crystallogr., 11, 615 (1958); A. Zalkin, D. Sands, and R. Elson, ibid., 12, 21 (1959). (b) A. J. Edwards, J. Chem. Soc., 3714 (1964). (c) In the liquid at least $\mathrm{SbF}_{5}$ gives evidence for forming chains: C. J. Hoffman, B. E. Holder, and W. L. Jolly, J. Phys. Chem., 62, 364 (1958) ; (d) R. D. Werder, R. A. Frey, and Hs. H. Gunthard, J. Chem. Phys., 47, 4159 (1967).
    (54) (a) R. J. Gillespie and R. S. Nyholm, Quart Rev., Chem. Soc., 11, 339 (1957); (b) R. J. Gillespie, Can. J. Chem., 38, 818 (1960); R. J. Gillespie, J. Chem. Educ., 40, 295 (1963); (c) R. J. Gillespie, Inorg, Chem., 5, 1634 (1966).

[^3]:    (57) (a) R. R. Holmes and R. M. Deiters, J. Amer. Chem. Sac., 90, 5021 (1968) ; (b) R. R. Holmes and IR. M. Deiters, Inorg. Chem., 7, 2229 (1968).
    (58) F. A. Miller and R. J. Capwell, Spectrochim. Acta, Part A, 27, 125 (1971).
    (59) R. R. Holmes and J. A. Golen, Inorg. Chem., 9, 1596 (1970).
    (60) C. C. Costain and G. B. B. M. Sutherland, J. Phys. Chem., 56, 32 (1952)
    (61) L. S. Bartell, Inorg. Chem., 9, 1594 (1970).

[^4]:    (62) Just, as the relative barrier energies were estimated ${ }^{11}$ to be approximately the same whether most of the motion in reaching the square-pyramid transition state involves the axial (field A) or equatorial atoms (field B), the intermediate case, involving a strongly coupled motion ${ }^{59}$ wherein simultaneous equatorial and axial bending takes place, results in a similar ordering of barrier energies. The small resultant changes in barrier energies are hardly worth considering at this level of approximation; hence the values for the preferred field $\mathrm{B}^{11}$ are listed in Table IV, column two.
    (63) H. Selig, J. H. Holloway, J. Tyson, and H. II. Claassen, J. Chem. Phys., 53, 2559 (1970).
    (64) L. S. Couch and R. R. Holmes, 163rd National Meeting of the American Chemical Society, Boston, Mass, April 1972, Abstract INORG 46.
    (65) C. J. İora, Jr., Ph.D. Thesis, University of Massachusetts, 1972, and unpublished work.

[^5]:    (66) S. R. Leone, B. Swanson, and D. F. Shriver, Inorg. Chem., 9, 2189 (1970)
    (67) T. R. Dyke, A. A. Muenter, W. Klemperer, and W. E. Falconer, J. Chem. Phys., 53, 3382 (1970).
    (68) This behavior differs from $\mathrm{PF}_{5}$ and most $\mathrm{PYF}_{4}$ systems which show no change in pattern on cooling, indicating that exchange is not "stopped" even at the lowest temperatures attainable.
    (69) G. M. Whitesides and H. L. Mitchell, J. Amer. Chem. Soc., 91, 5384 (1969).

[^6]:    70) (a) R. R. Holmes and R. M. Deiters, J. Chem. Phys., 51, 4043 (1969). The results from field B in the latter paper are referred to here. (b) R. R. Holmes, 162nd National Meeting of the American Chemical Society, Washington, D. C., Sept 1971, Abstract INORG 117.
[^7]:    (71) P. M. Treichel, R. A. Goodrich, and S. B. Pierce, J. Amer. Chem. Soc., 89, 2017 (1967)
    (72) J. C. Bailar, Jr., J. Inorg. Nucl. Chem., 8, 165 (1958).

[^8]:    (73) E. A. Cohen and C. D. Cornwell, Inorg. Chem., 7, 398 (1968).

[^9]:    John Cadogan is head of organic chemistry at Edinburgh University. He obtained a Ph.D. with D. H. Hey at King's College, London, and subsequently was lecturer there. In 1969 he became head of the department and Professor of Chemistry at St. Andrews, Scotland, and in 1969 moved to his present position at Edinburgh. He is a Meldola Medallist of the Royal Institute of Chemistry (1959), and was Corday Morgan Medallist and Prizeman of the Chemical Society in 1965. He was Tilden Lecturer and Medallist of the Chemical Society for 1971-1972. $H$ is research interests lie in reactive intermediates and synthesis using tervalent phosphorus reagents.

[^10]:    (1) (a) J. I. G. Cadogan and M. Cameron-Wood, Proc. Chem. Soc., London, 361 (1962); (b) P. J. Bunyan and J. I. G. Cadogan, ibid., 78 (1962).
    (2) (a) J. I. G. Cadogan, Quart. Rev., Chem. Soc., 22, 222 (1968); (b) Synthesis, 1, 11 (1969).
    (3) P. A. S. Smith in "Nitrenes," W. Lwowski, Ed., Wiley, New York, N. Y., 1970, p 99.
    (4) A. Kliegl, Ber., 42, 591 (1909).
    (5) P. L. Coe, A. T. Jukes, and J. C. Tatlow, J. Chem. Soc. C, 2020 (1966).
    (6) R, Kwok and P. Pranc, J. Ong. Chem., 33, 2880 (1968).

